

Introduction

- Multiplicative reasoning (MR) is a key developmental understanding (Simon, 2006)
- It requires:
- A significant conceptual shift from additive reasoning (Tzur et al., 2013).
- A move from thinking of number as a composite unit to thinking of two composite units with transformations or coordinating operations (Steffe, 1992)
- MR as an approach to quantitative thinking is challenging for teachers to develop in their students (Carrier, 2014), yet it is foundational to advanced mathematics.

Research Design

- Developed and tested a MR intervention for third graders with mathematics disabilities
- Implementation science approach for development (see Cook \& Odom, 2013)
- Employed a mix of quantitative and qualitative research methods to engage in iterative testing and revision cycles.
- An iterative testing and revision cycles, with Years 1-2 involving Brief Learning Trial and Feasibility studies to test and improve the intervention design components and Year 3 Pilot study will explore fidelity and the promise of the intervention for a sample of thirdgrade students receiving Tier 2 instruction, through a small cluster randomized control trial with students nested in classes.

Participants in Brief Learning Trials

- Two $3^{\text {rd }}$ grade teachers and 10 students with mathematics difficulties (scored $\leq 12^{\text {th }}$ percentile AimswebPlus Concepts and Applications)

	Gender	Race/Ethnicity	EL status	Eligible for FRL
Teacher A Students	Male, $n=2$ Female, $n=4$	White/Not Hispanic, $n=3$ Laotian, $n=1$	Spanish, $n=3$	$n=6$
Teacher B Students	Male, $n=3$ Female, $n=1$	White/Not Hispanic, $n=3$ American Indian, $n=1$	Spanish, $n=2$	$n=3$
Note. None of the students was receiving special education services				

Measures

- Student Measures
- Progress monitoring
- Student satisfaction survey
- Teacher Measures
- Teacher survey
- Teacher interview
- Fidelity
- Lesson transcriptions compared to lesson script

Sample Items from Progress Monitoring Assessment

1. Which equation represents the picture below?
A. $2 \times 4=8$ B. $2+6=8$ C. $4 \times 2=8$ D. $4+4=8$
A. $12 \div 3=4$ B. $12 \div 2=6$ C. $12 \div 6=2$ D. $12 \div 4=3$
Ahich equation is the inverse of $4 \times 5=20$? 4. Which of the following represents a correct fact family? B. $5 \times 4=20$
A. $18 \div 2=9 \quad 18 \div 9=2 \quad 6 \times 3=18 \quad 3 \times 6=18$ D. $20 \div 5=4$ B. $18 \div 3=6 \quad 6 \times 3=18 \quad 3 \times 6=18 \quad 18 \div 6=3$ C. $3+5=8 \quad 4 \times 2=8 \quad 5+3=8 \quad 2 \times 4=8$

Intervention

- Teachers delivered the MR intervention in small groups for 10 weeks.

Unit 1: Meaning of Multiplication

30-minute daily instruction for 4 weeks

Lessons 1-5

Unit 2: Strategies for Multiplication

20-minute daily instruction for 6 weeks

Lessons 1-5

Unit 1: The Meaning of Multiplication

- Relate multiplication and addition and use that knowledge to write related multiplication and addition equations. (CCSS: 3.OA.1; 3.OA.9).
2 - Relate division and multiplication and use that knowledge to write division equations. (CCSS: 3.OA.2; 3.OA.9).

3 - Relate multiplication and division using equal-size groups and understand that multiplication and division are inverse operations. Use that knowledge to write related multiplication and division equations. (CCSS: 3.OA.1, 3.OA.2, 3.OA.6)
4 - Relate multiplication and division using arrays and understand that multiplication and division are inverse operations. Use that knowledge to write related multiplication and division equations. (CCSS: 3.OA.1, 3.OA.2, 3.OA.6)

5 - Solve division problems by thinking of the corresponding multiplication. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. (CCSS: 3.OA.4, 3.OA.6)
\#CECLIVE © $\odot 0^{\circ}$

Unit 2: Strategies for Multiplication

Lesson
1

- Use models and equal-size groups to understand multiplication with multiples of 5 and 10 . Identify patterns in the multiplication table and explain them using properties of operations. (CCSS-M: 3.OA.7, 3.OA.9)
- Use models and equal-size groups to understand multiplication with multiples of 2, 4, and 8. Identify patterns in the multiplication table and explain them using properties of operations. (CCSS-M: 3.OA.7, 3.OA.9).

3 - Use models and equal-size groups to understand multiplication with multiples of 3 and 6 . Identify patterns in the multiplication table and explain them using properties of operations. (CCSS-M: 3.OA.7, 3.OA.9).

4 - Use models and equal-size groups to understand multiplication with multiples of 9. Apply properties of operations as strategies to multiply and divide; identify patterns in the multiplication table and explain them using properties of operations. (CCSS-M: 3.0A.5, 3.0A.7, 3.OA.9)
5 - Use models and equal-size groups to understand multiplication with multiples of 7. Apply properties of operations as strategies to multiply and divide; identify patterns in the multiplication table and explain them using properties of operations. (CCSS-M: 3.0A.5, 3.0A.7, 3.OA.9)

Unit 2: Sample Lesson Excerpt

 of operations. (CCSM. 1. 3.0A.7:3.0A9)
 Vocobilay. Commutative propecty of multiontiont Proctice Problems 1-15

Teaching the Lesson

Mutivipication Facts: 5s and 10 s
Teacher:-In our last lessons, we found that multipication and division are related because the
 in our lat lessons, what equation would you wite based on these pictures? (Disp their esuation: After ful
given with oech p picture)

$((\underset{\sim}{\text { com }}$

Unit 2: Sample Lesson Excerpt

Results

- Teacher Survey: 4-point rating scale (4 = strongly agree, 1= strongly disagree)
- Lesson scripts were helpful ($M=3.4$)
- Lessons provided sufficient opportunities for students to respond ($M=4.0$)
- Students were engaged with the instructional materials ($M=4.0$)
- Students would improve in multiplicative reasoning skills ($M=3.5$)
- MR intervention incorporated evidence-based practices ($M=3.9$)
- MR intervention aligned with third-grade standards ($M=3.6$)

Results

- Teacher Interviews:

- Students needed the repetition and re-teaching included in the lessons.
- Student responses in the early lessons indicated they lack number and operation sense.
- Both teachers liked the strategies and reported that their students' performance improved in terms of understanding multiplication and division as inverse operations.

Results

- Lesson Analysis
- Logistical
- Length of lessons too long for typical intervention class
- Classroom management of small group instruction impacts pacing of lessons.
- Intervention Content
- Effective representations within the intervention: Number line and equal size groupings
- Mathematical foundations:
- Relationships - multiplication and addition; division and subtraction
- Pattern identification
- Use of precise academic language

Implications for revisions and testing

- Shorter lessons
- Increased focus on conceptual understanding
- Included more interactive components
- Warm-up
- Think-pair-share
- Hands-on explorations
- Sharpened representations
- Identified classroom management and questioning strategies for inclusion in professional development

Acknowledgment

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant \#R324A190101 to the University of California, Riverside.

